skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Acharya, Amit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. "Important physical observations in rupture dynamics such as static fault friction, short-slip, self-healing, and supershear phenomenon in cracks are studied. A continuum model of rupture dynamics is developed using the field dislocation mechanics (FDM) theory. The energy density function in our model encodes accepted and simple physical facts related to rocks and granular materials under compression. We work within a 2-dimensional ansatz of FDM where the rupture front is allowed to move only in a horizontal fault layer sandwiched between elastic blocks. Damage via the degradation of elastic modulus is allowed to occur only in the fault layer, characterized by the amount of plastic slip. The theory dictates the evolution equation of the plastic shear strain to be a Hamilton-Jacobi (H-J) equation, resulting in the representation of a propagating rupture front. A Central-Upwind scheme is used to solve the H-J equation. The rupture propagation is fully coupled to elastodynamics in the whole domain, and our simulations recover static friction laws as emergent features of our continuum model, without putting in by hand any such discontinuous criteria in our model. Estimates of material parameters of cohesion and friction angle are deduced. Short-slip and slip-weakening (crack-like) behaviors are also reproduced as a function of the degree of damage behind the rupture front. The long-time behavior of a moving rupture front is probed, and it is deduced that the equilibrium profiles under no shear stress are not traveling wave profiles under non-zero shear load in our model. However, it is shown that a traveling wave structure is likely attained in the limit of long times. Finally, a crack-like damage front is driven by an initial impact loading, and it is observed in our numerical simulations that an upper bound to the crack speed is the dilatational wave speed of the material unless the material is put under pre-stressed conditions, in which case supersonic motion can be obtained. Without pre-stress, intersonic (supershear) motion is recovered under appropriate conditions." 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. A finite element based computational scheme is developed and employed to assess a duality based variational approach to the solution of the linear heat and transport PDE in one space dimension and time, and the nonlinear system of ODEs of Euler for the rotation of a rigid body about a fixed point. The formulation turns initial-(boundary) value problems into degenerate elliptic boundary value problems in (space)-time domains representing the Euler-Lagrange equations of suitably designed dual functionals in each of the above problems. We demonstrate reasonable success in approximating solutions of this range of parabolic, hyperbolic, and ODE primal problems, which includes energy dissipation as well as conservation, by a unified dual strategy lending itself to a variational formulation. The scheme naturally associates a family of dual solutions to a unique primal solution; such ‘gauge invariance’ is demonstrated in our computed solutions of the heat and transport equations, including the case of a transient dual solution corresponding to a steady primal solution of the heat equation. Primal evolution problems with causality are shown to be correctly approximated by noncausal dual problems. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract A technique for developing convex dual variational principles for the governing PDE of nonlinear elastostatics and elastodynamics is presented. This allows the definition of notions of a variational dual solution and a dual solution corresponding to the PDEs of nonlinear elasticity, even when the latter arise as formal Euler–Lagrange equations corresponding to non-quasiconvex elastic energy functionals whose energy minimizers do not exist. This is demonstrated rigorously in the case of elastostatics for the Saint-Venant Kirchhoff material (in all dimensions), where the existence of variational dual solutions is also proven. The existence of a variational dual solution for the incompressible neo-Hookean material in 2-d is also shown. Stressed and unstressed elastostatic and elastodynamic solutions in 1 space dimension corresponding to a non-convex, double-well energy are computed using the dual methodology. In particular, we show the stability of a dual elastodynamic equilibrium solution for which there are regions of non-vanishing length with negative elastic stiffness, i.e. non-hyperbolic regions, for which the corresponding primal problem is ill-posed and demonstrates an explosive ‘Hadamard instability;’ this appears to have implications for the modeling of physically observed softening behavior in macroscopic mechanical response. 
    more » « less
  4. A methodology for defining variational principles for a class of PDE (partial differential equations) models from continuum mechanics is demonstrated, and some of its features are explored. The scheme is applied to quasi-static and dynamic models of rate-independent and rate-dependent, single-crystal plasticity at finite deformation. 
    more » « less
  5. We demonstrate the feasibility of a scheme to obtain approximate weak solutions to the (inviscid) Burgers equation in conservation and Hamilton-Jacobi form, treated as degenerate elliptic problems. We show different variants recover non-unique weak solutions as appropriate, and also specific constructive approaches to recover the corresponding entropy solutions. 
    more » « less
  6. A continuum grain boundary model is developed, which uses experimentally measured grain boundary energy data as a function of misorientation to simulate idealized grain boundary evolution in a one-dimensional (1D) grain array. The model uses a continuum representation of the misorientation in terms of spatial gradients of the orientation as a fundamental field. The grain boundary energy density employed is non-convex in this orientation gradient, based on physical grounds. Simple gradient descent dynamics of the energy are utilized for idealized microstructure evolution, which requires higher-order regularization of the energy density for the model to be well set; the regularization is physically justified. Microstructure evolution is presented using two plausible energy density functions, both defined from the same experimental data: a “smooth” and a “cusp” energy density. Results of grain boundary equilibria and microstructure evolution representing grain reorientation in 1D are presented. The different shapes of the energy density functions representing a common data set are shown to result in different overall microstructural evolution of the system. Mathematically, the constructed energy functional formally is of the Aviles–Giga/Cross–Newell type but with unequal well depths, resulting in a difference in the structural feature of solutions that can be identified with grain boundaries, as well as in the approach to equilibria from identical initial conditions. This study also investigates the metastability of grain boundaries. It supports the general thermodynamics belief that they persist for extended periods before eventually vanishing due to the lowest energy configuration favored by fluctuations over infinite time. 
    more » « less
  7. Abstract A continuum mechanical model of coupled dislocation based plasticity and fracture at finite deformation is proposed. Motivating questions and target applications of the model are sketched. 
    more » « less
  8. This paper examines a system of partial differential equations describing dislocation dynamics in a crystalline solid. In particular we consider dynamics linearized about a state of zero stress and use linear semigroup theory to establish existence, uniqueness, and time-asymptotic behavior of the linear system. 
    more » « less
  9. Abstract In this paper, a model for defects in nematic liquid crystals that was introduced in Zhang et al. (Physica D Nonlinear Phenom 417:132828, 2021) is studied. In the literature, the setting of many models for defects is the function space SBV (special functions of bounded variation). However, the model considered herein regularizes the director field to be in a Sobolev space by introducing a second vector field tracking the defect. A relaxation result in the case of fixed parameters is proved along with some partial compactness results as the defect width vanishes. 
    more » « less
  10. Abstract A dual variational principle is defined for the nonlinear system of PDE describing the dynamics of dislocations in elastic solids. The dual variational principle accounting for a specified set of initial and boundary conditions for a general class of PDE is also developed. 
    more » « less